Newton's and Fresnel's Diffraction Experiments

The Continuation of Newton's Diffraction Experiments

Diffraction of Light at Slit and Hindrance

Interference-Angle Condition, Diffraction and Imagery

Diffraction One After Another and with Intermediate Imagery

Diminishing of Frequency of Light after Diffraction

Inner and Outer Diffraction-Fringes at Circular Openings

Superposition of Interference and Diffraction

Diffraction Experiments with Inhomogeneous Illumination

Experiments with Polarized Light at Slit and Double-Slit

The Background of Diffraction-Figures

Trial for Interpretation of Newton's Diffraction Experiments

Consequences for Photons out of Newton's Diffraction Experiments

Consequences for Structure of Electrons out of that of Photons

The Thermally Conditioned Electromagnetic Field

Diffraction and Light-Emission of Electrons

Energy-Steps of Electrons in Magnetic Eigen-Field

Faraday's Electro-tonic States

Near-Field Optics with Regard to Newton's Diffraction-Experiments

Consideration of Magnetic Moment of Electron in Quantum Theories

Light in Deterministic and Synergetic Processes


| german| impressum | zurück | feedback | home |  


Consequences for Photons out of Newton's Diffraction Experiments


With the proof of localization of bent light in the narrow surroundings of edge in dependence on angle of observation by Newton was already shown, that Heisenberg's uncertainty relation can not be applicable for diffraction at slit. Out of Newton's diffraction experiments and their continuations the structure of photon as electromagnetic vortex-pair with field was inferred. For photons with this structure the Einstein-Podolsky-Rosen paradox is without object. It is discussed: spontane-, collecting-, Hertz's dipole-, and stimulated- emission. The life-time is interpreted as time for building up a photon with structure.


The field of light

Nieke [3] and [4] verified that Newton was right with his statement: 'never light can be a wave', for he had proved this with the transition of inner to outer diffraction-fringes at slit and the localization of bent light in surroundings of edges. By Nieke [5] the photon with structure has an electromagnetic field as part of the photon. This field is to prove in photo-effects, and this field shows also effects by change of direction of its photon. The effects of field former was denoted as wave-quality. This is also a contribution to Genz [27] who considered the vacant space.


[1] I. Newton, Opticks or a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. London 1704; Opera que exstant omnis, Tom IV, London 1782; Optics. Reprint, Bruxelles 1966; Optik II + III, Übers. W, Abendroth, Ostwald's Klassiker Nr. 97, Engelmann, Leipzig 1898; Neuauflage, Nr. 96/97, Vieweg, Braunschweig 1983; Optique, trad. J. P. Marat 1787; Reproduction, Bourgois, Paris 1989.
[2] A. J. Fresne1, Oeuvre Complétes I. Paris 1866; Abhandlungen über die Beugung des Lichtes. Ostwalds Klassiker Nr. 215 Engelmann, Leipzig 1926.
[3] H. Nieke, Newtons Beugungsexperimente und ihre Weiterführung. Halle 1997, Comp. Print 1 Arbeit 1; Newton's Diffraction Experiments and their Continuation Halle 1997, comp. print3, paper 1.
[4] As [3], paper 2.
[5] As [3], paper 12.
[6] A. Sommerfeld, VorIesungen über theoretische Physik, Bd. II Mechanik der deformierbaren Medien. Akad. Verlagsges., Leipzig 1945, S. 155.
[7] W. Heisenberg, Die physikalischen Prinzipien der Quantentheorie. 2. Aufl. Hirzel; Leipzig 1941; The Physical Principles of Quantum Theory. University Press Chicago 1930.
[8] E. Schrödinger, Über den Indeterminismus in der Physik. Barth, Leipzig 1932, S. 9.
[9] O. Carnal u. J. Mlynek, Phys. Bl. 47 (1991) 379; Phys. Rev. Lett. 66 (1991) Nr. 21,2689-96.
[10] A. Einstein, B. Podolsky a. N. Rosen, Phys. Rev. 47 (1935) 777.
[11] J. F. Clauser, M. A. Horne, A. Shimony a. R. A. Holt, Phys. Rev. 23 (1969) 880.
[12] M. Planck, Wärmestrahlung. 5. Aufl. Barth, Leipzig 1923. Theory of Heat, Introduction to Theoretical Physics, Vol 5, Macmillan, London 1932
[13] In: Pauli, (Ed.), Niels Bohr - and the development of physics. Pergamon, London 1955, p. 14.
[14] H. Georgi, Sci. Am (USA) 244 (1981) Nr. 4, p. 40; Spectrum d. Wiss. (1981) Juni, S. 70.
[15] I. C. Slater, Nature 113 (1924) 307.
[16] N. Bohr, A. W. Kramers a. I. C. Slater, Z. Phys. 24 (1924) 69; PhiI. Mag. 47 (1924) 785.
[17] L. D. Landau. E. M. Lifschitz, Lehrbuch der theoretischen Physik, Bd II, Klassische Feldtheorie. Akademie Verlag, Berlin 1967, S. 199.

[18] W. E. Lamb jr. a. R. C. Retherford, Phys. Rev. 72 (1947) 241; 79 (1950) 549; 81 (1950) 222. [19] R. W. James a. G. W. Brindley, Proc. Roy. Soc. London A 121 (1928) 155
[20] H. Hertz, Ann. Physik (III) 36 (1889) 1; Ges. Werke, Bd. II, Barth, Leipzig 1892, S. 147, Quotation S. 170. Electric Waves, Transl. D. E. Jeans, Macmillan, London 1893
[21] P. L. Kapitza a. P. A. M. Dirac, Proc. Cambridge Phil. Soc. 28 (1933) 297.
[22] H. Schwarz, Z.Phys. 204 (1967) 276; Phys. Bl. 26 (1970) 436.
[23] P. Gould Am. J. Phys. 62 (1994) 1046.
[24] G. Mayar a.. L. MandeI, Nature 198 (1963) 255.
[25] G. Richter, W. Brunner u. H. Paul, Ann. Physik (7) 14 (1968) 239.
[26] G. Rempe, Phys. Bl. 51 (1995) 383.
[27] H. Genz, Naturwissenschaften 82 (1995) 170.




   © 2006 by tediamedia •