Newton's and Fresnel's Diffraction Experiments

The Continuation of Newton's Diffraction Experiments

Diffraction of Light at Slit and Hindrance

Interference-Angle Condition, Diffraction and Imagery

Diffraction One After Another and with Intermediate Imagery

Diminishing of Frequency of Light after Diffraction

Inner and Outer Diffraction-Fringes at Circular Openings

Superposition of Interference and Diffraction

Diffraction Experiments with Inhomogeneous Illumination

Experiments with Polarized Light at Slit and Double-Slit

The Background of Diffraction-Figures

Trial for Interpretation of Newton's Diffraction Experiments

Consequences for Photons out of Newton's Diffraction Experiments

Consequences for Structure of Electrons out of that of Photons

The Thermally Conditioned Electromagnetic Field

Diffraction and Light-Emission of Electrons

Energy-Steps of Electrons in Magnetic Eigen-Field

Faraday's Electro-tonic States

Near-Field Optics with Regard to Newton's Diffraction-Experiments

Consideration of Magnetic Moment of Electron in Quantum Theories

Light in Deterministic and Synergetic Processes


| german| impressum | zurück | feedback | home |  


Light in Deterministic and Synergetic Processes


The experimental foundations of the 'photon with structure and field' are reported in detail. With those basic facts are reported diffraction and interference as deterministic interaction of single-processes by change of direction or reflection - refraction. However, in induced emission in laser the dominant field synchronized by interaction the photon in 'status nascendi' in a synergetic process, for the photon is built up during the so called life-time.



The spontaneous emission permits only the interaction of every photon with its field, designated as self-interaction. This is a deterministic interaction dependent on phase-dependent return of field to its photon as change of direction or influence on reflection or refraction.
The induced emission causes a state- of order of photons. The field of every photon can interact with every photon of equal frequency and mode, also with photons in 'status nascendi'. This could be named as synergetic interaction. Source of synergetics is the synchronize of photons in 'status nascendi' by the dominant field and so a light-crystal can arise.
In non-linear optics, at very high density of photons, is a to suppose an interaction of photons with each other. This accords to a general interaction with many new effects, synergetic effects too
. One could say, that is no news: With order of diffraction-fringes, differences of phases, and of orders of radiation, this was formal to explain. That is only partially right, but now this can be founded. 1st. With the change of direction of photons, 2nd: With the periodical influence on parts of reflection and refraction, 3rd: In lasers by synchronisation of photons in 'status nascendi'. Only the last is a process of synergetics


[1] N. Bohr, A. W. Kramers a. I. C. Slater, Z. Phys. 24 (1924) 69; Phil. Mag. 47 (1924) 785.
[2] H. Nieke, Newtons Beugungsexperimente und ihre Weiterführung. Halle 1997, Comp. Print 1, Arbeit 12. (Vorhanden in vielen deutschen Universitätsbibliotheken); Newton's Diffraction Experiments and their Continuation. Halle 1997, comp. print 3, paper 12. (Available in some university libraries).
[3] As [2], paper 1.
[4] As [2], paper 2.
[5] I. Newton, Opticks, or a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light. London 1704; Opera quae exstant omnis, Tom IV. London 1782; Optics. Reprint. Bruxelles 1966; Optik II + III, Übers. W. Abendroth, Ostwald's Klassiker Nr. 97, Engelmann, Leipzig 1898; Neuauflage: Bd. 96/97, Vieweg, Braunschweig 1983. Optique. Trac. J. P. Marat 1787; Bourgois, Paris 1989.
[6] W. Heisenberg, Introduction to Uniform Field Theory of Elementary Particles. Interscience, New York 1966; Einführung in die einheitliche Feldtheorie der Elementarteilchen. Hirzel, Stuttgart 1967. S. 116.
[7] A. Sommerfeld, Vorlesungen über theoretische Physik, Bd. II, Mechanik der deformierbaren Medien. Akad. Verlagsges., Leipzig 1945, S. 153-156.
[8] A. Sommerfeld, Atombau und Spektrallinien. Bd. II. Vieweg, Braunschweig 1960. {vgl. Gl. (I.1.5) und (I.6.9a)}; Atomic Structure and Spectrallines. Transl. L. Brose, Methuse, London 1923, 1930, 1934.
[9] E. Schrödinger, Abhandlungen zur Wellenmechanik Barth, Leipzig 1927; Collected Papers of Wave Mechanics. Blacki, London, Glasgow 1928.
[10] L. de Broglie, La Physique quantique restera-t-elle indéterministe? Cauthier-Villars, Paris 1953; Phys. Bl. 9 (1953) 486, 541.
[11] M. Born, Physics in my Generation. Pergamon, London New York 1956; Physik im Wandel meiner Zeit. Vieweg, Braunschweig u. Akademie-Verlag Berlin 1958. S. 35.
[12] E. Mach, Die Prinzipien der physikalischen Optik. Barth, Leipzig 1921, S. 185-226; The Principles of Physical Optics. New York 1926.
[13] As [2], paper 5.
[14] A. J. Fresnel, Oeuvre Complétes I. Paris 1866; Abhandlungen über die Beugung des Lichtes. Ostwalds Klassiker Nr. 215, Engelmann, Leipzig 1926.
[15] As [2], paper 6.
[16] A. Smekal, Naturwiss. 11 (1923) 973.
[17] E. Berge, Math. naturwiss. Unterricht 27 (1974) 326.
[18] As [2], paper 4.
[19] T. Young, A course of lectures on natural philosophy and mechanical arts. London 1807.
[20] As [2], paper 3.
[21] As [2], paper 11.
[22] P. M. A. Dirac, Die Prinzipien der Quantenmechanik. Hirzel, Leipzig 1930; The Principles of Quantum Mechanics. Clerendon, Oxford 1935, 1947.
[23] As [5], but not book III, but book II.
[24] As [2], paper 8.
[25] H. Haken, Erfolgsgeheimnisse der Natur. Synergetik: Die Lehre vom Zusammenwirken. 1. Aufl. Nr. 34220, 1981, 2. Aufl. Ulstein Sachbuch Nr. 34725 Frankfurt/Berlin 1991. Kap. 5. Synergetics - An Introduction. Berlin / Heidelberg 1978.
[26] H. Haken u. A. Wunderlin, Die Selbstwechselwirkung der Materie. Vieweg Braunschweig 1991. Kap. 4.
[27] H. Haken, Licht und Materie. Mannheim 1981.
[28] P. L. Kapitza a. P. A. M. Dirac, Proc. Cambridge Phil. Soc. 28 (1933) 287
[29] H. Schwarz, Z. Phys. 204 (1967) 276; Phys. Bl. 26 (1970) 436.
[30] As [2], paper 13.
[31] G. Rempe, Phys. Bl. 51 (1995) 383; Phys. Rev. Lett. 58 (1987) 353; 64 (1990) 2783.
[32] G. Richter, W. Brunner u. H. Paul, Ann. Physik (7) 14 (1964) 339.
[33] G. Magyar a. Mandel, Nature 198 (1963) 255.
[34] As [2], paper 15.
[35] B. Hanbury-Brown a. R. Q. Twiss, Proc. Roy. Soc. London 242 (1957) 300; 243 (1958) 291.




   © 2006 by tediamedia •