Newton's and Fresnel's Diffraction Experiments

The Continuation of Newton's Diffraction Experiments

Diffraction of Light at Slit and Hindrance

Interference-Angle Condition, Diffraction and Imagery

Diffraction One After Another and with Intermediate Imagery

Diminishing of Frequency of Light after Diffraction

Inner and Outer Diffraction-Fringes at Circular Openings

Superposition of Interference and Diffraction

Diffraction Experiments with Inhomogeneous Illumination

Experiments with Polarized Light at Slit and Double-Slit

The Background of Diffraction-Figures

Trial for Interpretation of Newton's Diffraction Experiments

Consequences for Photons out of Newton's Diffraction Experiments

Consequences for Structure of Electrons out of that of Photons

The Thermally Conditioned Electromagnetic Field

Diffraction and Light-Emission of Electrons

Energy-Steps of Electrons in Magnetic Eigen-Field

Faraday's Electro-tonic States

Near-Field Optics with Regard to Newton's Diffraction-Experiments

Consideration of Magnetic Moment of Electron in Quantum Theories

Light in Deterministic and Synergetic Processes


| german| impressum | zurück | feedback | home |  


The Thermally Conditioned Electromagnetic Field


As consequence of thermic motion the thermally conditioned electromagnetic field (TEMF) is defined which should produce the temperature-radiation by means of dipole formation. Since 1960 we think that elementary particles have a structure. In terms of historic development of temperature-radiation and diffraction of light is shown that it is overdue to consider by way of trial the structure of the photon as medium or basis of quantization of radiation. A photon with the frequency f is only stable in structure and emitable if the Einstein-equation E = h f is fulfilled.



At the beginning was asked the question: Why do hot bodies glow? According this paper the question has to be answered: At thermic motion also dipoles are formed. These dipoles generate the TEMF. Is collected with the frequency f local the energy h f, so will be emitted a photon with structure. For this structure of photons yield also with their periodicity the so called wave-nature of light, so is omit in the duality of wave and particle the wave and therefore the dualism is untenable. It remains the photon with structure and field as fusion as demanded by Einstein [6].


[1] M. J. Klein, in: A. P. French (Hrsg.), Albert Einstein - Wirkung und Nachwirkung. Vieweg, Braunschweig, Wiesbaden 1985, S. 232. Reference: A. Einstein, Ideas and Opinions. Dell, New York 1954.
[2] M. Planck, Die Ableitung der Strahlungsgesetze. Ostwald's Klassiker Nr. 206, Akad. Verlagsges. Leipzig 1923. M. Planck, Wärmestrahlung. Barth, Leipzig, 2. Aufl. 1913, 5. Aufl. 1923. Theory of Heat, Introduction to Theoretical Physics. Vol. 5. Macmillan, London 1936.
[3] N. Bohr, Über die Quantentheorie der Linienspektren. Vieweg, Braunschweig 1923. Zitat S. 6. On the Quantum-Theory of Line-Spectra. KÝbenhaven 1918-1923.
[4] T. S. Kuhn, Was sind wissenschaftliche Revolutionen? München 1982.
[5] A. Einstein, Ann. Physik (IV) 17 (1905) 132.
[6] A. Einstein, Phys. Z. 18 (1917) 121.
[7] T. S. Kuhn, Die Struktur wissenschaftlicher Revolutionen. Suhrkamp, Frankfurt M. 1973. The Structure of Scentific Revolutions. Chicago 1962, 1991.
[8] H. Nieke, Newtons Beugungsexperimente und ihre Weiterführung. Halle 1997, Comp. Print 1, Arbeit 13. Newton's Diffraction Experiments and their Continuation. Halle 1997, comp. print 2, paper 13
[9] As [8], paper 12.
[10] M. Born u. G. Huang, Dynamical Theory of Lattics. Oxford 1954.
[11] R. T. Smith, In: T. R. Govers a. F. J. de Heer (Ed.): The physics of electronic and atomic collisions. VII. ICPEAO Amsterdam 1971, Amsterdam a. London 1972, p. 1.
[12] S. V. Bobashev, as [11], p. 38.
[13] M. Born u. J. Frank, Z. Physik 31 (1925) 411.
[14] L. D. Landau, Phys. Z. Sowjetunion 1 (1932) 88; 2 (1932) 46.
[15] W. Finkelnburg u. Th. Peters, Handbuch der Physik XXVIII. Springer, Berlin, Göttingen, Heidelberg 1957, S. 79.
[16] V. Fock, Z. Physik 61 (1939) 126.
[17] R. Peierls, Ann. Physik (5) 3 (1929) 1055.
[18] L. Merten, Festkörperprobleme XII (1972) 381.
[19] R. CIaus, Festkörperprobleme XII (1972) 445.
[20] R. Claus, L. Merten u. J Brandmüller, Springer Tracts mod. Phys. 75 (1975), Springer, Berlin.
[21] A. A. Maradudin, In: Phonon Physics - a Survey. Ed. T. Paszkicwcz, Physics of Phonons. Lecture Notes of Physics, Springer, Berlin, Heidelberg, New York 1987, p. 1 - 47.
[22] H. R. Schober, In: [21], S. 188 - 207.
[23] K. F. Renk, Z. Physik 201. (1967) 445.
[24] E. Schuller, Die Dispersion polarer Gitterwellen in halbunendlichen Kristallen mit besonderer Berücksichtigung der Dämpfung. Dis. Univ. München 1976.
[25] G. Cohen-Tannoudji, in: Ed. J. Dalibard u. a. : Fundamental Systems in Quantum Optics. Les Houches session LIII. North-Holland, Amsterdam 1992; Phys. Bl. 51 (1995) 91.
[26] L. A. Crum a. P. A. Roy, Science 266 (1994)
[27] R. Hanbury-Brown a. R. Q. Twiss, Proc. Roy. Soc. London 242 (1957) 300; 243 (1958) 291.
[28] W. Zukale, Exper. Techn. Physik 24 (1976) 17.
[29] A. Haug, Festkörperprobleme XII (1972) ,411.




   © 2006 by tediamedia •